
www.manaraa.com

Final Project Report

A Survey of techniques used to reduce the Semantic Gap
between Database Management Systems and Storage

Subsystems

Biplob Kumar Debnath

Nagapramod Mandagere

Nov 28, 2006

www.manaraa.com

A Survey of techniques used to reduce the Semantic Gap
Between Database Management Systems and Storage

Subsystems

1. Introduction
One of the most important modules of any database management system is the storage
manager module. This module essentially controls the way the data is allocated, accessed,
and stored on storage devices. Storage subsystems are typically virtualized for the
purposes of consolidation, easy of management, reducing interdependence, etc. Due to
this virtualization now the database storage managers neither have a strict control over
the physical layout of data nor are they aware of the internal characteristics of storage
subsystems, and apply some coarse rules of thumb to optimize its access. On the other
hand, storage subsystems do not have semantic knowledge of the data that they are
storing, again relying on their own rules of thumb to manage such workload-dependent
tasks as pre-fetching, caching, and data layout. The end result is both sides are working
blindly to optimize their performance without not knowing what other side is doing.
Various studies [1][2] emphasize the importance reducing information gap between
applications and underlying storage devices. Over the years, various techniques have
been developed to reduce the semantic gap between database management systems and
storage systems. In this project we plan to survey various approaches used by researchers
or implementers in order to reduce this semantic gap.

Storage technology has evolved much in the intervening years and disk-resident
processing got attention from the research community again in 1990s. The biggest change
was widespread use of disk arrays that use a large number of disks working in parallel.
Special-purpose silicon cores in database machines are replaced by general-purpose
embedded processing and increased memory cores. Numerous parallel algorithms for
database operations, such as joins and sorts have been developed for different
architectures, such as shared-nothing, shared-memory, and shared disk since the
inception of specialized database machines. Serial communications were able to provide
enough bandwidth to disk to overcome the message passing overheads.

2. Classification
As disk arrays have become very popular, storage subsystems have moved more swiftly
towards virtualization, in the process, increasing the gap between storage and
applications. To cope with this trend, researchers have proposed various mechanisms to
reduce the gap between applications and the data store. These efforts can be broadly
grouped into four categories, namely – Building Special Purpose Database Machines,
Server side changes, Storage side changes and interfaces that facilitate better
communication between the two. In Figure 1, various components are marked where
various modifications can be made to reduce this semantic gap.

www.manaraa.com

 Figure 1. Memory & Storage hierarchy (-> indicate alternatives for improvement)

2.1. Building Special Purpose Database Machines
The idea of placing intelligence in storage systems to help database operation was
explored extensively in the context of database machines in late 1970s and late 1980s.
Database machines can be classified into four categories depending on disk processing
[8]:

1. Processor per head: DBC[14], SURE[15]
2. Processor per track: CAFS[16], RARES[17], RAP[18], CASSM[19]
3. Processor per disk: SURE[15]
4. Multi-processor cache: DIRECT[20], RDBM[21], DBMAC[22], INFOPLEX[23],

RAP.2[24]

In all of the architectures, there was a central processor which pushed simple database
operations (e.g., scan) closer to disk, and achieved a dramatic performance improvement
for these operations. The main counter-arguments are summarized by Boral and Dewitt
[11]. First, most database machine use special-purpose hardware, such as associative
disks, associative CCD devices, and magnetic bubble memory which increased the design
time and cost of these machines. Again, the performance gain was not enough to justify
the additional cost incurred by this hardware. Second, although the performance was
impressive for scan operations, but for the complex database operations, such as sorts and
joins did not provide significant benefits. Third, the performance offered by database
machines can be easily achievable by smart indexing techniques. Fourth, CPU processing
speed was improving much faster than the disk transfer rates improve, so CPU was sitting
idle. Fifth, the communication overhead between processing elements were high. Finally,
database vendors did not agree to rewrite their legacy code base to take advantage of
features offered by this new hardware.

application

Storage
&
Memory
Manager
OS

File
Systems

Volume
Manager

S
C
S
I

I
D
E

Server Server Server

Interconnection Network

Disk Array Controller Disk Array Controller

SCSI Disks SATA Disks

Logical Volume Manager Logical Volume Manager

www.manaraa.com

On the server side multiple schemes for memory and page management have been
explored by a number of researchers. Main focus has been on decoupling in-memory
page layout form the actual storage layout. Clotho [5] is a buffer pool and storage
management architecture that decouples in-memory page layout and the storage layout.

On the storage side multiple alternatives have been explored, but most of them focus on
moving some application functionality onto the storage devices. Active disk, semantic
disk etc. are techniques that fall under this category. Another option is to build intelligent
Logical Volume Managers that allow the applications to exploit characteristics of
underlying group of disks. Atropos [3] is one such disk array Logical Volume Manager
that exploits storage characteristics.

Little effort has gone into the interface itself. SCSI has existed since early 1980s.
Object based Storage interface is new paradigm that has gained some attention recently.

2.2. Server Side Modifications
Relational database systems store data in fixed size pages. The pages size can range from
2KB to 4KB. To access individual records of a table requested by a query, a scan
operator of a database system access main memory. But, not all pages can be
accommodated in the main memory and hence non-volatile disks are used for permanent
storage. An access of data involves fetching a page from disk and copying it into
memory. It’s the job of the database storage manager to perform the task of translation
and retrieval of these pages. Storage model is basically all the layout information needed
to interpret the information in a page. Pages contain header information that describes
what records are contained within and how they are laid out. The choice of the storage
model/page layout has a drastic impact on the performance of the database system [13].
In commercial system different page layout/storage models have been used, namely
N-array storage model (NSM), Decomposition Storage Model (DSM) and Partition
Attributes across (PAX).

2.2.1. N-array Storage Model (NSM)
In NSM[13], all attributes of a relation are stored in a single page and full records are
stored within a page one after the other. This approach provides maximum benefit for
queries with full record access, which is commonly seen in online transaction processing
workloads. In this model an implicit assumption is made about the storage system layout.
A page is mapped to consecutive LBAs considering the assumption that accessing
consecutive LBAs is faster than accessing random LBAs. Usage of Logical Block
Addressing mode hides the actual disk layout characteristics.

2.2.2. Decomposition Storage Model (DSM)
In DSM [13], only one attribute is stored per page. This approach provides maximum
benefit for queries that access a small number of attributes of a table, which is often the
case in decision support systems. Here, DSM pages with consecutive records containing

www.manaraa.com

the same attribute can be mapped into extents of contiguous LBNs. A single large IO
access can bring in multiple pages within an extent thus increasing IO efficiency and also
assists in pre-fetching. Again an implicit assumption is that access to consecutive LBAs
is faster than accessing random LBAs.

2.2.3. Partition Attributes Across (PAX)
PAX [13] is a page layout optimized for processor cache performance. In PAX, page is
partitioned into separate minipages. A single minipage contains data of only one attribute
and occupies consecutive memory locations. A single page contains all attributes or
minipages for a given set of records. A scan of individual attributes in this system
accesses consecutive memory locations there by taking advantage of cache line pre-fetch
logic implemented for the processor. By carefully designing the cache boundaries, one
can in effect cause a page fault to pre-fetch data for several records. Again, it does not
address the actual disk geometrics.

The above approaches do not address all level of memory hierarchy. They try to use a
static predetermined approach based on prior knowledge across various levels of memory
hierarchy. This leads to page layouts that are highly optimized for only a specific type of
workload. Moreover, none of these methods exploit the disk geometrics.

2.2.4. Decoupling in memory page layout and storage layout - Clotho
The main motivation behind the design of Clotho [5] is the fact that it is very difficult to
design a static scheme for data placement in memory and on disk that performs uniformly
across different types of workloads and different types of disk subsystems. The basic idea
behind this work is that since performance characteristics of each level of memory
hierarchy differ vastly, different data organization needs to be used at different levels.
The authors propose to decouple the in-memory data layout from that of the disk/storage
data layout. This facilitates implementation of data layouts tailored to different levels
without compromising performance at other levels.

Figure 2. Decouple of in-memory page layout and storage page layout

www.manaraa.com

The basic idea is illustrated in Figure 2. Here, relation R shown in Figure 3 consists of
four attributes: Patient_ID, Name, Age and Phone.

Figure 3. Relation R

The following select query is applied to the relation R.

SELECT Patient_ID
FROM R

WHERE Age > 50

At the storage level, the data is organized into A-pages. An A-page contains all attributes
of the records there by only one A-page needs to be fetched to retrieve a full record. An
A-page organizes data into minipages that group values from the same attribute for
efficient predicate evaluation, while the rest of the attributes are in the same A-page. To
ensure that the record reconstruction cost is minimized regardless of the size of the A-
page, Clotho allows the device to use optimized methods for placing the contents of the
A-page onto the storage medium. There by this approach fully exploits sequential scan
for evaluating predicates, and also allows or facilitates careful placement A-pages on the
device to ensure close to sequential perfromance when reconstructing a record.

C-page is the in-memory representation of a page. A C-page is similar to an A-page in
that it also contains attribute values grouped in minipages, to maximize processor cache
performance. Unlike an A-page, a C-page only contains values for the attributes the
query accesses. Since, the query in the example only uses the Patient_ID and Age, the
C-page only includes these two attributes, maximizing memory utilization. C-page can
now make room for data from two A-pages to fill up the space saved from omitting
unwanted attributes. For a detailed discussion on the C-pages and A-pages and the
detailed working of Clotho, the reader is advised to refer [5].

2.3. Storage Side Modifications
In this section we first describe the working of Logical volume managers (LVM). An
LVM is a piece of software that is responsible for allocating space on storage devices in a
way that is more flexible than conventional partitioning schemes. A volume manager can
concatenate, stripe together or otherwise combine partitions into larger virtual ones that
can be resized or moved. This process can be thought of as a form of virtualization as it
turns storage into a more easily manageable and transparent resource.

Current disk array LVMs try to exploit the unique performance characteristics of their
individual disk drives. Since an LVM sits below the host’s storage interface, it could

www.manaraa.com

internally exploit disk specific features transparent to the host. Most LVMs use data
distribution schemes designed and configured independently of the underlying devices.
This again assumes that access to sequential LBAs is faster than random LBAs. They
stripe data across their disks, assigning fixed-sized sets of blocks to their disks in a round-
robin fashion. Disk striping can provide effective load balancing of small I/Os and
parallel transfers for large I/Os if a good stripe size is chosen. The stripe sizes have
remained relatively constant within the range of 2 – 32 KB. However, the track sizes
have changed significantly as memory density or aureal density has changed. Typical
track sizes are anywhere between 500 KB to 2MB. Another factor that has lead to
increased track size is use of perpendicular recording. But, disk arrays currently do not
seem account for growing track size over time. As a consequence of this mismatch,
medium to large sized requests to the disk arrays result in suboptimal performance due to
small inefficient disk accesses.

2.3.1. Atropos – LVM Built to Exploit and Expose Disk Characteristics
Atropos is a disk array LVM [3] built with the sole purpose of exploiting characteristics
of its underlying collection of disks that it virtualizes. The basic idea behind Atropos is
illustrated in Figure 4. Consider an application that requires efficient access to two-
dimensional structures in both dimensions. A relation in database qualifies as a perfect
use case.

Figure 4. A 2-dimensional Data Set

The example in Figure 2.3.1.1 depicts a two-dimensional data structure consisting of four
columns 1,2,3,4 and many rows A-Z. To map this two-dimensional structure into a linear
space of LBNs, conventional systems decide a priori if row major or column major order
is likely to be accessed most frequently. In the figure column major order has been
chosen for illustration with disk stripping across two disks.

The mapping of each element to the LBNs of the individual disks is depicted in Figure
2.3.1.2(a) in a traditional layout. Accessing data in the row major order, however, results
in disk I/Os to disjoint LBNs. For the example in Figure 5(a), an access to row
A1,A2,A3,A4 requires four I/Os, each of which includes the high positioning cost for a
small random request. The inefficiency of this access pattern stems from the lack of
information in conventional systems; one column is blindly allocated after another within
the LBN address space. Atropos supports efficient access in both orders with a new data
organization as shown in Figure 5(b). This layout maps columns such that their respective
first row elements start on the same disk and enable efficient row order access. This
layout still achieves sequential, and hence efficient, column-major access, just like the

www.manaraa.com

traditional layout. Accessing the row A1,A2,A3,A4 however, is much more efficient than
with traditional approach. Instead of small random accesses, the row is now accessed
semi-sequentially in one disk revolution (worst case), incurring much smaller positioning
cost as a result of the first seeks only and no rotational latency.

Figure 5. (a): Traditional Mapping (b): Atropos Mapping

In this work the authors demonstrate that a logical volume manager can be built to exploit
and expose the underlying disk characteristics. For a detailed discussion on the how the
volume manager interfaces with the host applications and the detailed working of
Atropos, the reader is advised to refer [3].

2.3.2. Active Disks – Offloads Simple Processing to Disks

Figure 6. Disk Subsystem using Active Disks [6]

Active disks [6] leverage storage technology advancements and parallel algorithms
improvement for database operations over the intervening years. Commodity disks are no
longer mere spinning magnetic storages for data. Disks are embedded with a processor,
memory, cache, and network connection. It can perform some computation in addition to

www.manaraa.com

storing data. [6] proposes the idea of leveraging disk processing power to execute
selective portion of database operation in parallel close to data. It discuses how one can
map all basic database operations (e.g., select, join, and project) on Active Disk system
with proper low-level primitives. The architecture is shown in Figure 6.

For select operation (e.g., select l_quantity, l_price, form lineitem where l_shipdate >=
‘2006-09-07’), the where clause in SQL query is passed to individual disk. Each disk
searches its local data and returned the qualified records which satisfied the where
condition. Host parses the query and sends select condition to individual disk.

For sorting a replacement selection algorithm is used as it shows good adaptive behavior
with changing memory conditions. Each disk-drive works on its local data and sends the
information back to host, which finally produce the final sorted order. For aggregation
operation (e.g., select sum (l_quantity), sum (l_price *(l-l_discount)) from lineitem group
by l_return), each disk-drive sends the local sum and count (for sum). The host produces
the final aggregate result by combining these local summary results passed by all local
drives. After receiving the query which involves sort or aggregation operation, host sends
modified query for each disk drive which tells them to send the local sum and counts.

Join operation (e.g., select l_price, l_quantity, p_partkey from part, lineitem whre
p_name like ‘%white%’ and l_partkey = p_partkey) is implemented using bloom-filter
strategy. This strategy is used as it does not depend on the size of the relations. A bit
vector b[1…n] is initialized with ‘0’s is created. A hash function is applied to the join
attribute of R, and corresponding bit in b is set to ‘1’. Then this bit vector is passed to all
the disk drive, which applies the same hash function to join attribute of S and if it maps to
a bit in b which is ‘0’ that tuple is discarded. In this way it reduces the number tuples of S
sent to the host for joining.

To support database operation, some primitives are added the disk drive. Arithmetic
operations are added for aggregation and comparison operators are added for scan and
sort operation. Replacement selection sort primitive is added in the disk-drive to support
sort and aggregate operation, and a semi-join primitive which uses bloom-filter is added
to support join operation.

By moving portion of database processing directly at disk one can exploit parallelism in
large storage system, and early discard unwanted data which can reduce the network
traffic dramatically. [6] Shows how Active Disk system can use disk processing power to
overcome the I/O bottleneck. Active Disk does not consider geometry aware data layout
for efficient database operations.

2.3.3. Database Aware Semantic-Disk Approach
Database Machines require specialized hardware and Active Disks requires sophisticated
programming environments. In contrast, semantic-disk [4] approach increases its
functionality by placing high-level semantic knowledge about DBMS within the storage
systems. Embedded with high level of knowledge DBMS and using its own low level
control, semantic disks can improve performance with better layout and caching, can

www.manaraa.com

provide improved reliability and security guarantees. The main motivation behind
semantic-disk approach is that current block based interface storage systems interface
will not changed in near future as developers like block-based interface for its ease of use
and to support legacy applications. So, semantic disk approach attempts to adapt storage
systems to learn about the applications behavior running above it and use this knowledge
to improve performance.

The main mechanism behind semantic disk is to find correlations among the blocks. It
tries to track which relational table a particular block has been allocated to. One way to
find this information is to consult the write-ahead log (WAL) entries. DBMS tracks all
operations that change the on-disk contents, by writing it in WAL. To support ACID
properties, WAL entries will be written on disk before the actual change is being
performed. Due to this property, inferring knowledge WAL is quite simple. Semantic
disk takes advantage of this property to find the relationship between a block and table,
which can be used to derive co-relations among blocks. Now, DBMS needs not to aware
of the underlying storage system properties, storage systems gather information
transparently using its high level knowledge about the application behavior. This
approach is called log snooping.

[4] shows that performance can improved more if DBMS explicitly collects three
additional types of statistics and periodically writes them to storage devices. As these
statistics will be used for performance enhancement, it does not need transactional
semantics; as a result for logging these statistics the overhead will be very low. The
access time of a particular block or table is the most important statistics which DBMS
can communicate with the semantic disk. It can be used to derive other useful
information. The access correlation for entries such as tables and indices is another
useful statistics DBMS can record for each query. This information can help storage
device to group related tables and to find correlation among related tables. Third useful
statistics is the access counts, number of queries that accessed a particular table over a
fixed period of time. In addition to log snooping, using these extra information semantic
disks can improve performance with better layout and caching, can improve reliability,
and can provide extra security guarantees.

2.4. Interface Modifications
.

2.4.1. Object-Based Storage Device (OSD)

[7] examines the approach of passing semantic information from a database system to the
storage subsystem to bridge the information gap between these two levels.
Recently standardized Object-Based Storage Device (OSD) interface moves low level
storage functionalities close to data and provides an object interface to access the data.
The OSD model is shown in Figure 7. [7] leverages OSD interface for communicating
semantic information database to the storage device. It discusses how we can map
relation of a database to an OSD object; and how we can read and write database relation

www.manaraa.com

efficiently taking advantage of geometry aware data-layout through additional OSD
interface.

Figure 7. Object Based Storage Model [7]

An Object is a logical unit of storage. It has interface like file-access (e.g. read, write),
securities policies to authorize access, and has attributes which describe the
characteristics of the data it is storing. Object size can dynamically grow and shrink.
Objects can store any types of data (e.g., text, video, audio etc.). It can even store an
entire database. The device which stores objects is called OSD. OSD differs from block-
based storage device in terms of interface, but not in terms of physical media. OSD puts a
wrapper around traditional block-based storage device, provides a clean interface, and
hide the view of block-based storage device. OSD can be a single disk, tape drive, optical
media, or storage controller with an array of drives.

OSD provides the opportunity of push more intelligence on the storage devices. When
data is stored as an object, various characteristics of data, for example data type, access
pattern, access frequency, reliability requirements are stored as object attributes. Storage
device can use these attributes to lay-out data efficiently and serve data to upper
application layer which can help various database operations.

We can offload the space management component of a DBMS to OSD which can makes
data sharing easier and flexible. Traditionally, each file system lays data on disk in its
own manner and maintains the block-level metadata. As different file systems lay data
differently on disk and maintain different meta-data, so applications need to be aware file
system specific meta-data information which makes cross platform data sharing very
difficult. With OSD as space-management component is offloaded to objects so
dependency between file system specific metadata and storage system is completely
removed, this greatly improves the scalability of clusters.

Another handy feature of OSD is the security. In OSD every access is authorized, and as
data path and control path is totally different, and authorization is done without accessing
the central authority the performance is greatly improved. OSD provides security in finer
granular in low cost compared to block-based devices.

www.manaraa.com

Using OSD interface, database can inform the characteristics of a relation to the storage
system. A relation is stored in a single object using an existing storage model (e.g., NSM
or DSM or CSM). Data pages can be mapped to fixed-sized ranges (e.g., 8KB) within
objects, as if the OSD were a standard block device. When an object is created to store a
relation, DBMS can inform OSD of the schema being stored. The length of each field in a
single record will stored as a shared attribute. Armed with the schema and the
characteristics of the underlying disks, OSD can generate a geometry-aware data layout
to store the relation.

Currently, OSD standard provides read and write interface which reads from and write to
object data in linear fashion using byte-offset. As, database is considered two-
dimensional, OSD interface need to extended to support efficient database operation
embedded with semantic information. The following new commands are suggested in [7]:

• CREATEDB(schema)

• READDB(Record Offset, Length, Field Bitmap)

• WRITEDB(Record Offset, Length, Field Bitmap)

CREATEDB command creates a new objects and the schema of the relation is passed to
OSD which stored it as a shared attribute. READDB and WRITEDB command access
database using record offset and operates only on the attributes specified by field-bitmap
and applies operation to only length number of records. Now, database can offload
address translation, low level data layout, command processing functionalities to OSD.
Database make request to the OSD specifying the required data and memory address
where these data need to be placed, OSD handles rest of the task.

3. Comparison of Various Approaches
NSM, DSM, and PAX model [13] improves performance by layout relational pages in
different ways. NSM is good for OLTP workload, DSM is good for DSS workload, and
PAX is a trade off between two of them. A comparison among them is shown in the
Table 1 below:

Cache-memory performance Disk-memory performance Page Layout
Full-record
access

Partial-record
access

Full-Record
access

Partial-
Record
Access

NSM √ x √ x
DSM x √ X √
PAX √ √ √ x

Table 1. Comparison of NSM, DSM, and PAX

Fractured mirror approach [12], maintains two copies of the database. One copy uses
NSM page layout, another one uses DSM layout. Depending on the query either is

www.manaraa.com

forwarded to either NSM or DSM copy. The problem this approach is it increases space
requirement by 100%.

Apropos logical volume manager [3] exposes the underlying storage system layout to the
applications running above it. Now, DBMS use this information to write data, rows are
written in semi-sequential manner, and columns are written in sequential manner so that
for column wise access it performance will be close to DSM performance, but for row
wise access performance will be better than the random access. But the problem, as
application are tight coupled with underlying storage devices characteristics, if storage
devices layout changes, we have to rewrite some part of the DBMS storage manager.

Semantic disk approach [4] can work transparently without DBMS knowing that storage
system is performing log snooping. Storage systems have a very high level knowledge of
the DBMS working behavior. It uses WAL entries to find correlations among blocks,
uses this knowledge for better caching, layout, reliability, and security guarantees. With
some help from DBMS side it can improve performance even better. In this case, the
change needed in DBMS is less and overhead for record logs of access time, access
counts, access correlation is very less. As technology trends show that block based
interface will be changed in near future, semantic disk seems be very promising.

In contrast to semantic disk, database machines require specialized hardware and active
disks required a sophisticated programming environment. Active disks [6] leverage the
processing power of storage device to process application level code near data. It mainly
focuses on how to partition data among disk and host processors so that data transferred
will be minimized. But the problems of Active disks approach is that we have change
legacy DBMS code, and we have to write disk firmware code aware database operations.

Object-based storage device [7] moves low-level storage functions to the storage device
and provides an object interface to the applications. The underlying storage device is still
block-based; OSD just put an object wrapper above it. It also provides a clean interface
thorough which application can communicate QoS requirements, characteristics of data,
and access patterns to the storage device. Now, storage device can either ignore it, or with
it low control use this information for geometry aware data layout, caching, and
improving reliability and security guarantees. The benefit of OSD is as application
communicate with storage through predefines storage so as long as interface remains
same, it does not what change is happening in the underlying storage devices. But using
OSD we have change existing DBMS code. We have change current block-based storage
functions to OSD interface compatible. Another problem, currently OSD has no special
interface for efficient DB operations, as we add extend the current OSD standard suitable
for database operations. It is a speculation that may in terms performance OSD will not
that much promising, but if the concerns is scalability, ease of management, and clean
interface, OSD can be a one of the viable candidate solutions. Table 2 is the summary of
all of our findings.

www.manaraa.com

 Data

Layout
Awareness

on disk

DB
operation
processing

On Disk

Changes
needed in

DBMS code

User
interface
provided

Page
Layout

awareness

Early
Discard

Specialized
Hardware

needed

Disk
Firmware

Update
Needed

Database
Machines

x √ x x x x √ √
NSM x x x x √ x x x
DSM x x x x √ x x x

 PAX √ x x x √ x x x
Fractured
Mirrors

√ x x x √ x RAID 1 x
Atropos

LVM
√ x √ x x x x √

Active
Disk

x √ √ √ x √ Disk
processing
power need

√

Semantic
Disk

x x √ x x x x √

OSD √ √ √ √ √ √ x √

Table 2. Summary of all findings

4. Conclusion
In this paper, we explored different techniques to reduce the semantic gap between
storage device and DBMS running above it. Various approaches such as building special
machines, extracting information from the storage devices, sending information about the
application behavior to storage devices, and changing interface of storage devices are
used to solve the problem. Every solution has some pros and cons. As current block
based interfaced well accepted by the industry, and programmers likes the liner
abstraction of storage device, so semantic disk approach [4] seems to be very promising.
As it requires very less change on DBMS part and assume very little high level
knowledge about DBMS in disk firmware. For long run, OSD approach [7] seems to be a
good candidate solution. As OSD standard is still a ongoing process, there are ample
scopes for researchers to explore flowing issues: how database tables can be mapped into
OSD objects, what additional interface we need for efficient database operation, how to
define geometry aware layout, what minimum information DBMS will supply to OSD
devices, and what we need in current DBMS stack to support OSD devices.

5. References
[1] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridging the information
gap in storage protocol stacks. Summer USENIX Technical Conference (Monterey, CA, 10–15
June 2002), pages 177–190, 2002.

[2] G. R. Ganger. Blurring the line between OSs and storage devices. Technical report CMU–
CS–01–166. Carnegie Mellon University, December 2001.

[3] Jiri Schindler, Steven W Schlosser, et al, Atropos: A Disk Array Volume Manager for
Orchestrated Use of Disks, In 3rd USENIX Conference on File and Storage Technologies FAST
04, CA. March 2004

www.manaraa.com

[4] Muthian Sivathanu, Lakshmi N Bairavasundaram, et al, Database Aware Sematicaly Smart
Storage, FAST 2005.

[5]Minglong Shao, et al, Clotho: Decoupling Memory Page Layout from Storage Organization,
VLDB 2004.

[6] E. Riedel, C. Faloutsos, and D. Nagle. Active Disk Archittecture for Databases. Technical
Report CMU-CS-00-145, Carniegie Mellon University, April 2000.

[7] Steve Schlosser, Sami Iren. Database Storage Management with Object-Based Storage
Devices, DAMON 2005.

[8] K. Keeton. Computer Architecture Support for Database Applications, PhD thesis, University
of California at Berkeley, 1999.

[9] A. Acharya, M. Uysal, and J. Saltz. Active Disk: Programming Model, Algorithms, and
Evaluation, ASPLOS VIII, 1998.

[10] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage for Large Scale Data Mining and
Multimedia, VLDB 1998.

[11] H. Boral and D. J. Dewitt. Database Machines: An Idea whose time has passed?, In 3rd
Workshop on Database Machines, 1983.

[12] R. Ramamurthy, D. J. Dewitt, and Q. Su. A Case for Fractured Mirrors, In Proc. VLDB,
2002

[13] A. Ailamaki, D. J. Dewitt, M. D. Hill, and M. Skounakis. Weaving Relations for Cache
Performance. In Proc. VLDB, 2001.

[14] J. Banerjee, et al. DBC - a database computer for very large data bases, IEEE Trans. on
Computers, June 1979.

[15] H. O. Leilich, G. Stiege, and H. C. Zeidler. A search processor for data base management
systems”, Proc. of the 4th VLDB, 1978.

[16] D. Bitton and J. Gray. The rebirth of database machine research, invited talk at VLDB '98,
August 1998.

[17] S. C. Lin, D. C. P. Smith, and J. M. Smith. The design of a rotating associative memory for
relational database applications, Transactions on Database Systems, 1(1):53-75, March 1976.

[18] E. A. Ozkarahan, S. A Schuster, and K. C. Smith. RAP - associative processor for database
management, AFIPS Conference Proc., Vol. 44, pages 379 - 388, 1975.

[19] S. Y. W. Su and G. J. Lipovski. CASSM: a cellular system for very large data bases, Proc. of
theVLDB Conference, pages 456-472, 1975.

[20] D. J. DeWitt. DIRECT - A multiprocessor organization for supporting relational database
management systems, IEEE Transactions on Computers, pages 395-406, June 1979.

www.manaraa.com

[21] W. Hell. RDBM - A relational data base machine: architecture and hardware design” Proc.
6th Workshop on Computer Architecture for Non-Numeric Processing, June 1981.

[22] M. Missikoff. An overview of the project DBMAC for a relational machine, Proc. of the 6th
Workshop on Computer Architecture for Non-Numeric Processing, June 1981.

[23] S. E. Madnick. The Infoplex database computer: concepts and directions, Proc. IEEE
Computer Conf., February 1979.

[24] S. Schuster, et al. RAP.2 - an associative processor for databases and its applications, IEEE
Trans. on Computers, June 1979.

